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Materials and Methods 

Growth of Re0.5Nb0.5S2 Crystals. Bulk single crystals of Re0.5Nb0.5S2 are synthesized using 

chemical vapor transport with a halide transport agent. Elemental powders of rhenium (Aldrich, 

99.995%), niobium (Alfa Aesar, 99.8%), and sulfur (Alfa Aesar, 99.5%) are mixed (approximately 

1 gram total precursor amount) and sealed into a quartz tube (L=20 cm, d=1 cm) with 80 mg of 

iodine (Alfa Aesar, 99.5%) under high vacuum (10^-6 Torr). The crystals are grown in a mild 

temperature gradient of 960-930°C for 21 days, before cooling naturally. The result is many small 

(~1mm), silver single crystals with platelet like morphology, that can be readily exfoliated with 

scotch tape (see Fig. S1). 

 

Scanning Transmission Electron Microscopy (STEM) and Energy Dispersive X-ray 

Spectroscopy (EDS) characterization.  

Annular dark field scanning transmission electron microscopy (ADF-STEM), as a widely used 

technique to probe the atomic structure of transition metal dichalcogenides (TMDs) [26–29], is 

performed to uncover atomic ordering in the Re0.5Nb0.5S2 alloy. An aberration-corrected FEI 

Titan3 (60−300) equipped with a SuperX energy dispersive X-ray spectrometry (EDS) system at 

80 kV is used for the imaging and spectroscopy. We use a camera length of 115 mm, a 



convergence angle of 30 mrad, an inner collection angle of 42 mrad, and a beam current of 50 

pA for image acquisition. EDS elemental mapping (Fig. S2) is performed in the STEM mode at 

80 kV with a 7min acquisition time. 

 

Infrared Micro-Spectroscopy Measurements. Infrared micro-spectroscopy measurements are 

carried out at the Advanced Light Source (Beamline 1.4) at Lawrence Berkeley National 

Laboratory. Measurements are collected on Nicolet iS50 FTIR in transmission mode. Few- and 

monolayer samples are first exfoliated onto PDMS stamps, and optical contrast is used to 

determine layer number (see Fig. S1), they are then deposited onto transparent quartz substrates 

for infrared measurements. 

 

Theoretical methods. We compute total energies using density functional theory (DFT) in the 

Perdew-Burke-Ernzerhof Generalized Gradient Approximation (PBE GGA) [30] with norm-

conserving pseudopotentials. We use the QUANTUM ESPRESSO software package to perform 

the calculations with a plane-wave basis with an energy cutoff of 80 Ry [31]. A 12×12 

Monkhorst-Pack k-point mesh is used to sample the 1×1 unit cells, and a 0.01 Ry Marzari-

Vanderbilt smearing is employed [32]. For thin film simulations, periodic copies of the slab are 

separated by 12 Å of vacuum in the 𝑧-direction. Cell parameter and atomic relaxations are done 

using the BFGS algorithm. All atomic positions are relaxed until the forces on the atoms are less 

than 10$% Ry/Bohr in magnitude along all Cartesian directions. We include the van der Waals 

interactions using the semiempirical DFT-D2 method [33,34]. 

 

Supplementary Text 

Total energies of RexNb(1-x)S2 alloys with varying composition. We compute the total energies 

of RexNb(1-x)S2 monolayers in the 1H, 1T and 1T′ configurations, where 𝑥 = 0, 1/16,… , 15/16,1. 

For each composition, we estimate the lowest energy configuration by separating the metal ions 

of the same kind as much as possible in 4×4 cells. For each simulation, after setting up the initial 

atomic positions using the 1H and 1T phases of NbS2 and the 1T′ phase of ReS2, we allow the 

atoms to relax in all directions. As a result, the distortions in the 1T′ phase of the compositions 

close to NbS2 (small 𝑥) diminish, while the 1T phase configurations for the compositions close to 

ReS2 (large 𝑥) become distorted. Thus, we find that the 1T and the 1T′ phases do not coexist for a 



given composition, and the distortion from 1T gradually increases as 𝑥 increases for all the 

RexNb(1-x)S2 monolayers. In addition, we observe that for 𝑥 > 0.75, the 1H phase also distorts due 

to the relaxation of some of the Re atoms away from their high symmetry positions in the plane of 

the monolayer. For pure ReS2, where the distortions are largest, this 4×4 1H phase lies at -0.33 

eV/MS2 with respect to the high-symmetry 1×1 1H phase. However, because we impose z→-z 

mirror symmetry in the initial setup of the 1H phase configurations, the S atoms in the symmetric 

positions are prevented from relaxing into different in-plane positions. Therefore, it is possible that 

for high x, the 1H phase is dynamically unstable and would relax into the 1T′ phase if allowed by 

symmetry. The in-plane distortions in the 1H structures of 𝑥 > 0.75 are demonstrated in Fig. S3. 

In the figure, it is observed that the variations in the Re-S bond lengths and the angles in the 

hexagonal grid increases as 𝑥 increases. For 𝑥 ≤ 0.75, the homogeneously distributed Nb atoms 

stabilize the threefold 1H symmetry. In Fig. S4, we demonstrate the fact that the threefold 1H 

symmetry is approximately preserved for 𝑥 = 0.5 configurations. After relaxing 24 configurations 

in the 6×6 cell (12 from the experimental Re/Nb distributions and 12 from random Re/Nb 

distributions), we have found that the atoms do not displace greatly from their ideal 1H positions 

(4 such configurations are shown in Fig. S4 as examples). In fact, all the in-plane displacements 

are less than 9 pm, and the average displacement is 4 pm with a standard deviation of 2 pm. Among 

the 6×6 configurations, the energy reduction by allowing these distortions is 38 meV/MS2 with a 

standard deviation of 2 meV/MS2. Moreover, if we only consider the positions of the Nb and Re 

atoms and their deviations from the ideal triangular lattice, we find that the average displacement 

is 1 pm with a standard deviation of 1 pm, and the maximum displacement is 3 pm. This shows 

that the 50%-50% alloy is almost perfectly approximated by the 1H phase with very small 

displacements (mostly in the positions of the sulfur atoms). 

 

The resulting total energies for the varying compositions are presented in Fig. 1d, where the energy 

of the 4×4 1H phase is taken as reference for each 𝑥. We see that a compositional phase transition 

from 1H to 1T′ occurs at 𝑥 = 0.68. For pure NbS2, the 1T phase is found to be 0.08 eV/MS2 higher 

in energy than the 1H phase. For pure ReS2, the 1T′ phase is 0.66 (0.99) eV/MS2 more stable than 

the 4×4 1H (1×1 1H) phase.  

 



Formation energy of RexNb(1-x)S2 alloys with respect to the two parent components. After 

determining the ground state configuration for each composition, we compute the formation 

energy of that configuration, defined as the total energy of that configuration with respect to the 

two parent TMD components: 

 

𝐸7(𝑥) = 𝐸:Nb(;$<)Re<S=> − (1 − 𝑥)𝐸(NbS=) − 𝑥𝐸(ReS=) 

 

We show the resulting formation energies in Fig. 1e. We find that the alloys are stable up to 𝑥 =

0.63 with the 𝑥 = 0.50 alloy being the most stable with respect to its components. Our result of 

Ef(0.5)=-0.21 eV/MS2 agrees well with the previous computational result of -0.24 eV/MS2 [15].  

 

Quantification of different nearest-neighbor number (DNN), spatial correlation functions, 

and the stripe length. We analyze 20 unit-cell by 20 unit-cell supercells of STEM images from 

various regions of the Re0.5Nb0.5S2 sample. Such an image is shown in Fig. 2b. We quantify the 

average DNN (DNN@@@@@@@) and find a preference for metal atoms to be adjacent to the atomic species of 

the other kind. This is analogous to antiferromagnetic Ising spins, which leads to geometrical 

frustration in a triangular lattice. In such a system, there is an energy cost for having two parallel 

spins as nearest neighbors, yet it is not possible to have all nearest-neighbor pairs be anti-parallel 

as in a square lattice. In short, this lattice can be thought of as consisting of triangles in which each 

nearest-neighbor interaction is part of only one triangle (Fig. S5). For any such triangle, there has 

to be at least one pair of parallel spins. If all the triangles have only one pair of parallel spins, the 

energy is minimized. Such a configuration is possible if up and down spins are arranged in 

alternating rows. Therefore, the largest possible value of DNN@@@@@@@ is 4.  

 

Up and down spins correspond to Nb and Re atoms in our system, and the triangular lattice is the 

transition metal sub-lattice. If the distribution of atoms in the alloy is solely driven by a nearest-

neighbor interaction, the structure shown in Fig. 1c would then correspond to a ground state. 

However, in the limit where the system size goes to infinity, there are infinitely many ground state 

configurations for the frustrated triangular lattice of Ising antiferromagnets. In fact, this system 

has no critical temperature at which an order-disorder transition happens; instead its entropy 



gradually increases from 𝑆(𝑇 = 0) = 0.323𝑅 to 𝑆(𝑇 → ∞) = 0.693𝑅, where 𝑅 is the molar gas 

constant. 

 

The Nb/Re atoms form a triangular sub-lattice with three principle directions. We compute the 

spatial correlation functions in these directions, defined as:  

 

𝐶GHH⃗ (∆𝑥) = 〈𝜎(�⃗�)𝜎(�⃗� + ∆𝑥�⃗�)〉<⃗ − 〈𝜎(�⃗�)〉<⃗〈𝜎(�⃗� + ∆𝑥�⃗�)〉<⃗, 

 

where 𝜎(�⃗�) identifies the metal (0 for Nb, 1 for Re) at the lattice site at �⃗�,  〈 〉<⃗ operation stands 

for averaging over all �⃗�, and �⃗� stands for the three principle directions (0°, 60° and 120° from the 

lattice vector �⃗�). We assume periodic boundary conditions in calculating the correlation functions. 

The results are presented in Fig. 2e. We observe that 𝐶GHH⃗ (0) = 0.25 for all directions, which is 

expected since 𝜎(�⃗�) = 0 for half of the sites, and 1 for the other half. 𝐶GHH⃗ (1) is between -0.06 and 

-0.08 for all directions, and 𝐶GHH⃗ (∆𝑥) fluctuates around zero for ∆𝑥 > 1.  

 

In addition, the lengths of homoatomic stripes along the three zigzag directions (extracted from 

the ADF-STEM image in Fig. 2b) are calculated by counting the number of consecutive Nb or Re 

atoms along a given direction until the atom of the other kind is encountered. The histograms of 

the stripe length along the three zigzag directions are presented in Figure 2f. 

 

Nearest-neighbor-based model of the distribution of atomic species. To build a nearest-

neighbor-based model to explain the distribution of atomic species, we run 60 DFT simulations in 

cells varying from 4×3 to 6×6. To include configurations with low DNN@@@@@@@ values, we use 10×1, 

12×1, 14×1 and 16×1 cells. The 6×6 structures in the dataset consist of 12 experimental and 12 

random configurations. For each simulation, we compute the DNN@@@@@@@ and relax all the atomic 

coordinates to find the total energy. We find that introducing the second nearest neighbors to the 

model does not improve the fit. We note that DNN@@@@@@@ alone does not determine the total energy, and 

for a given DNN@@@@@@@, energy can change up to 0.04 eV according to our calculated values. However, 

this spread, which is less than 0.02 eV for most configurations, is an order of magnitude smaller 

than the effect of changing the DNN@@@@@@@ (according to our model, the energy cost of decreasing DNN@@@@@@@ 

by 1 is 0.15 eV).  



 

Another helpful way to characterize the heteroatomic nearest neighbor tendency in this system is 

to examine the triplets of atomic species [20]. A triplet is defined as three lattice sites, where, 

among the three pairs of these sites, at least two are nearest neighbor pairs. Three types of triplets 

are possible: linear triplet (LT), bent triplet (BT) and triangular triplet (TT). In an LT, the three 

atoms are on a straight line; in a BT, they make a 120° angle; in a TT, they make up an equilateral 

triangle. If all three sites of a triplet are occupied by an Re (Nb) atom, the triplet is called an Re 

(Nb) triplet. Following Ref.  [20] we expect the probability for an atom to be in an Re or Nb LT/ 

BT to be equal to 

𝑝(LT) = 𝑝(BT) =
1
2R1 −

DNN@@@@@@@
6 S

=

,	

where DNN@@@@@@@ denotes the average DNN over the whole system, whereas, the probability for an atom 

to be in an Re or Nb TT is  

𝑝(TT) = R1 −
DNN@@@@@@@
6 S

U

.	

For a random system with DNN@@@@@@@ = 3, all of these probabilities are equal to  ;
V
. For a system with 

DNN@@@@@@@ = 4, however, we expect 𝑝(LT) = 𝑝(BT) = ;
;V

 and 𝑝(TT) = ;
=W

. In Table S1, we list the 

values for these probabilities as computed for the configurations in Figure 3c-e. 

 

Thermodynamics of species distribution at finite temperature. To explore the thermodynamics 

of species distribution at finite temperature in our alloys, we solve our nearest neighbor model 

using Monte Carlo simulations in the Metropolis algorithm [21]. For each temperature, we start 

with a 20 unit cell by 20 unit cell grid where a random half of the sites are assigned 0 (Nb) and the 

other half 1 (Re). Then, a pair of Nb and Re sites are randomly chosen. The change in energy (∆𝐸) 

due to switching the states in this pair of sites is computed, and the switching occurs with 

probability 1 if ∆𝐸 < 0, and with probability 𝑒$∆Z/[B\ if ∆𝐸 ≥ 0. We monitor the thermalization 

of the simulation runs using the time correlation (autocorrelation) function [22]. Because this 

model does not have a critical temperature, the simulation runs easily thermalize, i.e. the phase 

space is well-sampled. 

 



At each temperature, ten simulations are run, and the plotted values reflect the averages and the 

standard deviations among those runs. The results for the DNN@@@@@@@ vs. temperature are presented in 

Fig. 3b. We note that the agreement between our thermodynamic model and the experimentally 

grown alloys does not necessarily mean that the model provides a full picture of the growth 

processes. Indeed, switching the atoms between different lattice sites is a complicated chemical 

process with energy barriers that introduce time scales into the thermalization. These effects are 

not considered in our model.  

 

Calculations of thickness-dependent bandgap of Re0.5Nb0.5S2. In order to check the dependence 

of bandgap on the thickness and stacking sequence of the reference Re0.5Nb0.5S2, we construct all 

possible high-symmetry stacking sequences that can occur in the bilayer systems. After eliminating 

the seven stackings that are 12-82 meV/MS2 higher in energy than the lowest energy stacking, we 

are left with six stacking sequences that are all within 7.8 meV/MS2 of the lowest energy stacking. 

We list the total energies as well as the bandgap for bilayer and bulk of these stacking sequences 

in Table S2. For the calculations with more than two layers, we assume that the stacking sequence 

repeats with a periodicity of 2. We present the atomic structures of the six lowest-energy stackings 

in Fig. S6, and the band structures of the monolayer and a representative bilayer configuration in 

Fig. S7.  

 

We should note the reference structure (Fig. 1c) with long-range order is used for calculations of 

the bandgap for multilayer crystals. Therefore, the excellent agreement between theory and 

experiment can be attributed to the fact that the underestimation of the gap by DFT (usually in the 

30%-70% range) is cancelled by the overestimation of the gap by the long-range ordered of the 

reference structure (here ~50%). As a separate note, the considerable difference between the 

bandgap of experimental and random configurations can be attributed to the fact that the Coulomb 

potential at each transition metal site is mostly determined by its nearest neighbors. In the 

experimental configurations, DNN ≥ 2 for almost all the sites, whereas the DNN for the random 

configurations can be 0 to 6 (Figs. 3d-e). This larger spread for the random configurations causes 

the valence and the conduction states to have a larger energy spread, reducing the bandgap. 

 



 
Fig. S1 | Optical images of the Re0.5Nb0.5S2 crystals with different layer numbers used for 
optical measurements. a, 1L, b, 2L, c, 3L, and d, 5L and bulk (i.e. the thickest exfoliated flake) 
crystals on PDMS.  
 

 
Fig. S2 | Chemical composition analysis of the grown Re0.5Nb0.5S2 crystals using energy 
dispersive X-ray spectroscopy (EDS). a, Annular dark-field scanning transmission electron 



microscopy (ADF STEM) image of a few-layer Re0.5Nb0.5S2 crystal suspended over a hole of the 
TEM grid. b, EDS spectrum showing peaks of Re, Nb, and S. the Si peak comes from the silicon 
nitride TEM grid. c-e, EDS elemental maps of Re, Nb, and S respectively, from the region 
marked on the ADF-STEM image in a, showing uniform distribution of Re, Nb, and S.  
 

 

 
Fig. S3 | Breaking of the in-plane threefold symmetry in the 1H RexNb(1-x)S2 configurations 
for large x, when the atomic positions are allowed to relax in the 4×4 unit cell (Re: navy, Nb: 
light violet, S: yellow). 
 



 
Fig. S4 | Preservation of the in-plane threefold symmetry in the 1H Re0.5Nb0.5S2 
configurations, when the atomic positions are allowed to relax in the 6×6 unit cell (Re: navy, 
Nb: light violet, S: yellow). For the top two, the distribution of the Re and Nb atoms are taken 
from experimental images; for the bottom two, the Re and Nb atoms are randomly distributed. 
 
 

 
Fig. S5 | Decomposition of the triangular sub-lattice of transition metal atoms into 
individual triangles. Navy (Re) and violet (Nb) colors can be also seen as spin-up and spin-
down states. The triangles correspond to a unique representation of all the nearest-neighbor 
interaction in the lattice, where each triangle edge corresponds to one and only one nearest-
neighbor pair. The total energy of the lattice is thus equal to the sum of the interaction energies 
of all triangles. For such a configuration, it is not possible to make all three edges of a triangle 
heterospin. Instead, the most energetically favorable configuration of a triangle is where two of 
the edges are heterospin, and one is homospin, as seen in the top circled triangle. The only other 
combination is where all three edges are homospin, as seen in the bottom circled in triangle. 
 



 
Fig. S6 | Six lowest-energy stackings of the bilayer configurations of the reference 
Re0.5Nb0.5S2 structure, computed by DFT (Re: navy, Nb: light violet, S: yellow). 

 

 
Fig. S7 | Band structures of the monolayer and bilayer (AA3) configurations of the 
reference Re0.5Nb0.5S2 structure, computed by DFT. Calculations both with and without spin-
orbit interaction are shown. For each (k-point, band number) pair, the projections of the 
eigenfunction onto the atomic orbitals of the three component atoms are computed, and the point 
is colored based on these projections (Re: green, Nb: red, S: blue). The high-symmetry paths in 
the first Brillouin zone used in the plots are also shown. 



Table S1 | The probability of an atom to be in an Re or Nb triplet, for three triplet types (LT, 
BT and TT), and for the three configurations presented in Figure 3. The expected values 
according to the formulas given in the text are also presented in parentheses. 

 𝑝(LT) 𝑝(BT) 𝑝(TT) 

Theory - Figure 3c 0.066 (0.065) 0.065 (0.065) 0.046 (0.048) 

Experiment - Figure 3d 0.065 (0.066) 0.068 (0.066) 0.044 (0.047) 

Random - Figure 3e 0.124 (0.125) 0.124 (0.125) 0.126 (0.125) 

 

Table S2 | Bandgap of the six lowest-energy multilayer configurations of the reference 
Re0.5Nb0.5S2 structure, computed by DFT with spin-orbit interaction included. In the last row, 
the total energies with respect to the AB2 stacking for the bilayer crystals are shown. 

 Band gap (eV) in DFT with spin-orbit interaction 

Thickness AA1 AA2 AA3 AB1 AB2 AB3 

1 1.08 1.08 1.08 1.08 1.08 1.08 

2 0.69 0.75 0.66 0.62 0.66 0.65 

3 0.58 0.65 0.53 0.50 0.57 0.56 

4 0.54 0.62 0.49 0.46 0.53 0.52 

Bulk 0.45 0.56 0.38 0.35 0.43 0.41 

𝐸 (meV) 4.1 0.4 7.8 7.0 0.0 3.6 
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